A. Lingkaran dan Unsur-Unsurnya
1. Pengertian Lingkaran
Coba kamu perhatikan Gambar 6.1secara seksama.

Jam dinding, ban mobil, dan uang logam pada Gambar 6.1 merupakan contoh benda-benda yang memiliki bentuk dasar lingkaran. Secara geometris, benda-benda tersebut dapat digambarkan seperti pada Gambar 6.2(a). Perhatikan Gambar 6.2(b) dengan saksama. Misalkan A, B, C merupakan tiga titik sebarang pada lingkaran yang berpusat di O. Dapat dilihat bahwa ketiga titik tersebut memiliki jarak yang sama terhadap titik O. Dengan demikian, lingkaran adalah kumpulan titik-titik yang membentuk lengkungan tertutup, di mana titik-titik pada lengkungan tersebut berjarak sama terhadap suatu titik tertentu. Titik tertentu itu disebut sebagai titik pusat lingkaran. Pada Gambar 6.2(b) , jarak OA, OB, dan OC disebut jari-jari lingkaran.
2. Unsur-Unsur Lingkaran
Ada beberapa bagian lingkaran yang termasuk dalam unsur-unsur sebuah lingkaran di antaranya titik pusat, jari-jari, diameter, busur, tali busur, tembereng, juring, dan apotema. Untuk lebih jelasnya, perhatikan uraian berikut.
a. Titik Pusat
Titik pusat lingkaran adalah titik yang terletak di tengah-tengah lingkaran. Pada Gambar 6.3 , titik O merupakan titik pusat lingkaran, dengan demikian, lingkaran tersebut dinamakan lingkaran O.
b. Jari-Jari (r)
Seperti yang telah dijelaskan sebelumnya, jari-jari lingkaran adalah garis dari titik pusat lingkaran ke lengkungan lingkaran. Pada Gambar 6.3 , jari-jari lingkaran ditunjukkan oleh garis OA, OB, dan OC.
c. Diameter (d)Diameter adalah garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat. Garis AB pada lingkaran O merupakan diameter lingkaran tersebut. Perhatikan bahwa AB = AO + OB. Dengan kata lain, nilai diameter merupakan dua kali nilai jari-jarinya, ditulis bahwa d = 2r.
d. Busur
Dalam lingkaran, busur lingkaran merupakan garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang di lengkungan tersebut. Pada Gambar 6.3 , garis lengkung AC (ditulis AC (), garis lengkung CB (ditulis CB ), dan garis lengkung AB (ditulis AB ) merupakan busur lingkaran O.
e. Tali Busur
Tali busur lingkaran adalah garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran. Berbeda dengan diameter, tali busur tidak melalui titik pusat lingkaran O. Tali busur lingkaran tersebut ditunjukkan oleh garis lurus AC yang tidak melalui titik pusat pada Gambar 6.3.
f. Tembereng
Tembereng adalah luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur. Pada Gambar 6.3 , tembereng ditunjukkan oleh daerah yang diarsir dan dibatasi oleh busur AC dan tali busur AC.
g. Juring
Juring lingkaran adalah luas daerah dalam lingkaran yang dibatasi oleh dua buah jari-jari lingkaran dan sebuah busur yang diapit oleh kedua jari-jari lingkaran tersebut. Pada Gambar 6.3 , juring lingkaran ditunjukkan oleh daerah yang diarsir yang dibatasi oleh jari-jari OC dan OB serta busur BC, dinamakan juring BOC.
h. Apotema
Pada sebuah lingkaran, apotema merupakan garis yang menghubungkan titik pusat lingkaran dengan tali busur lingkaran tersebut. Garis yang dibentuk bersifat tegak lurus dengan tali busur. Coba perhatikan Gambar 6.3 secara seksama. Garis OE merupakan garis apotema pada lingkaran O. Agar kamu lebih memahami materi tentang pengertian dan unsur-unsur
lingkaran, coba pelajari Contoh Soal 6.1 berikut ini.
B. Keliling dan Luas Lingkaran
1. Keliling Lingkaran
Coba kamu amati Gambar 6.4 secara seksama.

Gambar 6.4(a) menunjukkan sebuah lingkaran dengan titik A terletak di sebarang lengkungan lingkaran. Jika lingkaran tersebut dipotong di titik A, kemudian direbahkan, hasilnya adalah sebuah garis lurus AA' seperti pada gambar Gambar 6.4(b) . Panjang garis lurus tersebut merupakan keliling lingkaran. Jadi, keliling lingkaran adalah panjang lengkungan pembentuk
lingkaran tersebut. Bagaimana menghitung keliling lingkaran? Misalkan, diketahui sebuah lingkaran yang terbuat dari kawat. Keliling tersebut dapat dihitung dengan mengukur panjang kawat yang membentuk lingkaran tersebut. Selain dengan cara di atas, keliling sebuah lingkaran dapat juga ditentukan menggunakan rumus. Akan tetapi, rumus ini bergabung pada sebuah nilai, yaitu π (dibaca phi). Berapakah nilai π? Untuk mengetahuinya, lakukan kegiatan berikut dengan kelompok belajarmu.




Comments

Popular Posts